
1

Crypto.com | 2

Research and Insights

Head of Research and Insights
Henry Hon PhD, CFA

Research Intern
Bowen Liu

2 Published on 28 Jan 2022

Crypto.com | 3

RESEARCH DISCLAIMER
This report alone must not be taken as the basis for investment decisions. Users shall
assume the entire risk of any use made of it. The information provided is merely
complementary and does not constitute an offer, solicitation for the purchase or sale of
any financial instruments, inducement, promise, guarantee, warranty, or an official
confirmation of any transactions or contract of any kind.

The views expressed herein are based solely on information available publicly, internal
data or information from other reliable sources believed to be true. This report includes
projections, forecasts and other predictive statements which represent Crypto.com’s
assumptions and expectations in the light of currently available information. Such
projections and forecasts are made based on industry trends, circumstances and
factors involving risks, variables and uncertainties. Opinions expressed herein are our
current opinions as of the date appearing on the report only.

No representations or warranties have been made to the recipients as to the accuracy
or completeness of the information, statements, opinions or matters (express or
implied) arising out of, contained in or derived from this report or any omission from
this document. All liability for any loss or damage of whatsoever kind (whether
foreseeable or not) which may arise from any person acting on any information and
opinions contained in this report or any information which is made available in
connection with any further enquiries, notwithstanding any negligence, default or lack
of care, is disclaimed.

This report is not meant for public distribution. Reproduction or dissemination, directly
or indirectly, of research data and reports of Crypto.com in any form, is prohibited
except with the written permission of Crypto.com. Persons into whose possession the
reports may come are required to observe these restrictions.

3 Published on 28 Jan 2022

https://crypto.com/
https://crypto.com/
https://crypto.com/

Crypto.com | 4

Contents
Executive Summary 6

1. Introduction 7

2. Reentrancy Attack 9

2.1 Attack Explained 9

2.2 Case Studies 11

2.3 Mitigation & Prevention 12

3. Phishing Attack 14

3.1 Attack Explained 14

3.2 Case Studies 14

3.3 Variants of Phishing Attacks 16

3.4 Mitigation & Prevention 17

4. Flash Loan Attacks & Price Manipulation 18

4.1 Attack Explained 18

4.2 Case Studies 19

4.3 Mitigation & Prevention 22

5. Rug Pulls 23

5.1 Attack Explained 23

5.2 Case Studies 24

5.3 Mitigation & Prevention 25

6. Code Bugs 26

6.1 Attack Explained 26

6.2 Case Studies 26

6.2.1 Lack of Balance/Address Checking 27

6.2.2 Integer Overflow 28

4 Published on 28 Jan 2022

Crypto.com | 5

6.2.3 Multi-sig Incompleteness 28

6.2.4 Re-callable Init() 29

6.2.5 Code Workflow Error 30

7. Poor Access Control 32

7.1 Attack Explained 32

7.2 Case Studies 32

7.3 Mitigation & Prevention 35

8. Compromised Private Key 36

8.1 Attack Explained 36

8.2 Case Studies 37

8.3 Mitigation & Prevention 38

9. Conclusion 39

References 40

5 Published on 28 Jan 2022

Crypto.com | 6

Executive Summary
Decentralised finance (DeFi) is a category of blockchain-based solutions that aims to
solve the problems of traditional finance. The DeFi space is rapidly expanding and
their TVLs surpassed over USD 100 billion as of December 2021.

However, greater usability comes with greater risks and challenges. As of
December 2021, there were over $2.5B funds lost in DeFi due to targeted attacks and
underlying system vulnerabilities.

In this report, we dispel the mist of infamous security exploits and vulnerabilities
targeted on multiple DeFi protocols in the past two years, shed light on the
postmortem of each attack type, and present the potential mitigation strategies.

The vulnerabilities that we discuss are as follows:

● We dissect how an attacker launches a Reentrancy Attack by exploiting
vulnerable fallback functions on Grim Finance, Visor Finance, Cream Finance,
DForce, and Uniswap protocols.

● Phishing is a type of social engineering attack often used to steal user
credential data. This report discusses the generic form of phishing attack in
addition to a variant at programming language level.

● Arbitrageurs in DeFi usually play Flash Loan Attacks to make a profit by
manipulating the price of particular asset types. We will sketch the workflow of
flash loan attacks suffered by victim platforms.

● Rug pulls are one of the most common DeFi attacks in which an individual
misuses their privileges for draining value from the protocol, which took more
than $2.8 billion worth of cryptocurrency from victims in 2021.

● Like all computer programs, it is likely that most DeFi protocols will contain
bugs. In this report, we pick up five typical yet easily-overlooked code flaws
and present possible mitigations.

● Access control is a traditional security mechanism that regulates and limits the
access permission to particular system resources. We present the biggest DeFi
hack event in 2021 on PolyNetwork due to poor access control.

● In the crypto world, private keys are crucial to an individual’s funds. This
report analyses three private key compromisation events on EasyFi, Nexus
Mutual, and Levyathan project.

6 Published on 28 Jan 2022

https://defipulse.com/
https://defiyield.app/rekt-database
https://chainbulletin.com/grim-finance-suffers-reentrancy-attack-loses-30m/
https://cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/
https://threatpost.com/cream-finance-defi-29m/169077/
https://cointelegraph.com/news/dforce-loses-9995-of-funds-in-latest-test-of-defi-resilience
https://siliconangle.com/2020/04/19/25m-cryptocurrency-stolen-hack-lendf-uniswap/
https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/
https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/
https://halborn.com/explained-the-poly-network-hack-august-2021/
https://halborn.com/explained-the-poly-network-hack-august-2021/
https://easyfi.network/
https://nexusmutual.io/
https://nexusmutual.io/
https://www.levyathan.finance/

Crypto.com | 7

1. Introduction
One promise of open cryptocurrencies is to make payments universally accessible
without needing trusted parties. Decentralised Finance (DeFi) aims at extending
this promise, proposing novel and traditional financial tools built on the top of a
blockchain-based smart contract platform. DeFi offers multiple advantages over
traditional finance. First, it inherits the blockchain properties, like decentralisation,
openness, accessibility, and censorship-resistance. Second, DeFi is highly flexible,
allowing for rapid innovation and experiments by combining, stacking, or
connecting different financial instruments. Finally, DeFi provides interoperable
services. Generally, new DeFi projects can be built or composed by combining
other DeFi platforms. Nowadays, the DeFi space is rapidly expanding including
lending & borrowing platforms, DEXs and derivatives, etc. Their TVLs surpassed
over $100 billion as of December 2021.

Greater usability and adoption come with greater security concerns. Like
many other platforms, the underlying DeFi ecosystems suffer from a
number of security risks. Firstly, most DeFi platforms are deployed over
permissionless and transparent smart contract environments. Thus, anyone,
including curious attackers and rational arbitrageurs, can inspect and interact with
them. Secondly, DeFi projects are always involved in monetary business logic.
Smart contracts determine how units of value convertible to real money move,
making them a high-value target with intrinsic economic incentives. Finally, many
DeFi platforms lack fine-grained security protection and regular security audit,
bringing into irretrievable financial loss.

According to the REKT database, over $2.5B funds loss happened in the DeFi
aspect due to targeted attacks, code flaws, rug pulls, and underlying system
vulnerabilities as of December 2021.

In the following sections, we will dispel the mist of infamous attacks and
vulnerabilities that happened in the DeFi space over the past two years. We hope
to shed light on the underlying mechanisms of those security exploits. We
also provide general mitigation strategies to discuss what lessons we can
learn from those attacks.

7 Published on 28 Jan 2022

https://101blockchains.com/security-risks-in-defi/
https://101blockchains.com/security-risks-in-defi/
https://101blockchains.com/security-risks-in-defi/
https://defipulse.com/
https://defipulse.com/
https://www.investing.com/news/cryptocurrency-news/rekt-database-reveals-17-billion-has-been-lost-to-defi-exploits-2604865
https://www.investing.com/news/cryptocurrency-news/rekt-database-reveals-17-billion-has-been-lost-to-defi-exploits-2604865
https://101blockchains.com/security-risks-in-defi/
https://fc22.ifca.ai/preproceedings/71.pdf
https://defiyield.app/rekt-database

Crypto.com | 8

8 Published on 28 Jan 2022

Crypto.com | 9

2. Reentrancy Attack

2.1 Attack Explained
A so-called reentrancy attack was the essence of the real-world The DAO
attack and led to a loss of over $50m worth of Ether at the time the attack
occurred. Fallback function abuse played a very important role in this reentrancy
attack. Let’s first see what a fallback function is and how it can be used for
malicious purposes.

A smart contract can have one anonymous function, known as well as the fallback
function. This function does not take any arguments and it is triggered in three
cases:

1. If none of the functions of the call to the contract match any of the
functions in the called contract

2. When the contract receives ether without extra data

3. If no data was supplied

Let us consider a vulnerable smart contract – a victim contract, in a simplified
version of a reentrancy attack. Note that the code is demonstrated by Solidity
programming language as it’s the most popular and developed language of
Ethereum.

9 Published on 28 Jan 2022

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470
https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470
https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470
https://docs.soliditylang.org/en/v0.5.3/contracts.html
https://docs.soliditylang.org/en/v0.5.3/contracts.html
https://docs.soliditylang.org/en/v0.5.3/contracts.html
https://docs.soliditylang.org/en/v0.5.3/index.html
https://docs.soliditylang.org/en/v0.5.3/index.html

Crypto.com | 10

The above example includes a Victim contract and an Attacker contract. As
shown, anyone can deposit ether into Victim contract, the number of ether is
recorded in the mapping balance. The ether deposited can be withdrawn by
calling withdraw(), which sends the ether to the msg.sender address. This
transfer implicitly triggers a fallback method (an anonymous method that does
not take any arguments) of the Attacker. This default behavior can have security
consequences as the execution flow can be controlled by a remote fallback
method. The reentrancy attack can be launched by an attacker using the Attacker
contract. A demonstrative workflow is shown below.

10 Published on 28 Jan 2022

https://docs.soliditylang.org/en/v0.5.3/miscellaneous.html

Crypto.com | 11

1. The Attacker first calls the deposit() method to deposit 2 ether into the
Victim Contract

2. Now the Attacker is ready to attack the target victim by calling the
Attacker.withdraw() method

3. Subsequently, Attacker.withdraw() calls Victim.withdraw() which then
triggers a recursive Victim.withdraw() call via the Attacker contract’s
fallback method

4. The above attack strategy effectively moves more ether from the Victim
contract to the account controlled by the Attacker

2.2 Case Studies
Reentrancy attacks are difficult to avoid since this class of bug can take
many forms. Developers should try to avoid coding reentrancy-vulnerable
functions into a smart contract. Otherwise, the malicious adversaries are able
to carefully analyse the workflow of the code and stealthily launch this attack type.

In the past few years, many DeFi platforms suffered from reentrancy exploits.
Apart from the original The DAO attack, over $112M were stolen, targeting Grim
Finance, Visor Finance, Cream Finance, DForce, and Uniswap.

11 Published on 28 Jan 2022

https://chainbulletin.com/grim-finance-suffers-reentrancy-attack-loses-30m/
https://chainbulletin.com/grim-finance-suffers-reentrancy-attack-loses-30m/
https://cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/
https://threatpost.com/cream-finance-defi-29m/169077/
https://cointelegraph.com/news/dforce-loses-9995-of-funds-in-latest-test-of-defi-resilience
https://siliconangle.com/2020/04/19/25m-cryptocurrency-stolen-hack-lendf-uniswap/

Crypto.com | 12

Platform Date Blockchain Value
Stolen

Attacker Address

Visor Finance 21 December
2021

Ethereum $8.2M Untraceable

Grim Finance 19 December
2021

Fantom $30M 0xdefc….

Cream Finance 30 August 2021 Ethereum $29M 0xce1f….

DForce 19 April 2020 Ethereum $25M 0xa6a6….

Uniswap &
Lendf.me

18 April 2020 Ethereum $25M 0xae7d….

2.3 Mitigation & Prevention
The community has proposed several efficient solutions to prevent reentrancy
attacks, ranging from programming language and coding practises to the attack
detection and prevention tools.

1. At the smart contract programming language level (e.g. Solidity), the
methods of send() and transfer() are recommended rather than using the
more vulnerable call.value().

2. For developers’ coding policy, we have recommended finishing all internal
work (ie. state changes) first, and only then calling the external function.
As indicated below, the reentrancy attack can be mitigated if we move
‘balance[msg.sender]=0’ before transferring value.

12 Published on 28 Jan 2022

https://cryptobriefing.com/8-2m-lost-visor-finance-suffers-latest-defi-hack/
https://medium.com/visorfinance/post-mortem-for-vvisr-staking-contract-exploit-and-upcoming-migration-7920e1dee55a
https://chainbulletin.com/grim-finance-suffers-reentrancy-attack-loses-30m/
https://twitter.com/financegrim/status/1472357770846519312
https://twitter.com/CreamdotFinance/status/1432249771750686721?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1432249771750686721%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fthreatpost.com%2Fcream-finance-defi-29m%2F169077%2F
https://twitter.com/peckshield/status/1432250118904889344?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1432250118904889344%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fthreatpost.com%2Fcream-finance-defi-29m%2F169077%2F
https://cointelegraph.com/news/dforce-loses-9995-of-funds-in-latest-test-of-defi-resilience
https://cointelegraph.com/news/dforce-hacker-returns-stolen-money-as-criticism-of-the-project-continues
https://medium.com/imtoken/about-recent-uniswap-and-lendf-me-reentrancy-attacks-7cebe834cb3
https://medium.com/imtoken/about-recent-uniswap-and-lendf-me-reentrancy-attacks-7cebe834cb3
https://peckshield.medium.com/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://quantstamp.com/blog/what-is-a-re-entrancy-attack
https://consensys.github.io/smart-contract-best-practices/known_attacks/#pitfalls-in-reentrancy-solutions
https://consensys.github.io/smart-contract-best-practices/known_attacks/#pitfalls-in-reentrancy-solutions

Crypto.com | 13

3. Meanwhile, academia has devised several verification tools that are able
to detect reentrancy vulnerability at run time. DeFi operators can employ
and deploy those tools to detect & prevent reentrancy attacks.

Tool Date Blockchain Team & Affiliations

ECFChecker January
2018

Ethereum Shelly Grossman et al, Tel Aviv
Univ & VMware

Sereum February
2019

Ethereum Michael Rodler et al, Univ of
Duisburg-Essen & NEC Lab

SODA February
2020

Ethereum Ting Chen et al, UESTC & HK Polyt
Univ & Texas Univ & Univ of

Guelph

SMACS July 2020 Ethereum Bowen Liu et al, SUTD & Chinese
Academy of Science

TxSpector August 2020 Ethereum Mengya Zhang et al, The Ohio
State Univ

13 Published on 28 Jan 2022

https://dl.acm.org/doi/pdf/10.1145/3158136
https://arxiv.org/pdf/1812.05934.pdf
https://www4.comp.polyu.edu.hk/~csxluo/SODA.pdf
https://ieeexplore.ieee.org/document/9153398/references#references
https://www.usenix.org/system/files/sec20-zhang-mengya.pdf

Crypto.com | 14

3. Phishing Attack

3.1 Attack Explained
Phishing is a type of social engineering attack often used to steal user data,
including login credentials and credit card numbers. As shown below, the
phishing attack occurs when an adversary, masquerading as a trusted entity,
dupes a victim into opening an email, instant message, or text message. The
victim is then tricked into clicking a malicious link, which can lead to the
installation of malware, freezing of the system as part of a ransomware attack or
revealing sensitive information.

3.2 Case Studies
Phishing attacks are common in DeFi ecosystems. An attacker usually prepares
a fake URL link and sends it to DeFi platform users or even developers to extract
information. When personal credentials such as login information and API keys
are leaked, the attack will compromise the victim’s accounts and transfer all their
crypto assets.

14 Published on 28 Jan 2022

Crypto.com | 15

For instance, on 2 December 2021, a series of unauthorised transactions occurred
on BadgerDAO, resulting in the $120M loss of funds from its users. It was caused
by ‘a maliciously injected snippet’ from Cloudflare Workers, an application
platform that runs on BadgerDAO’s cloud network. The hacker used a
compromised API key that was created without the knowledge or authorisation of
BadgerDAO engineers to periodically inject the malicious code that affected a
subset of its customers and steal funds.

The detailed workflow is as follows:

1. Attacker first launched a phishing attack to maliciously gain access of
creating & viewing API keys of Cloudflare Workers.

2. Attacker deployed the worker script via a compromised API key that was
created without the knowledge or authorisation of Badger engineers.

3. Attacker used this API access to periodically inject malicious code into the
BadgerDAO application such that the affected users’ funds would be
transferred.

Similarly, on 5 November 2021, a hacker stole $55M in various currencies
from bZx after one of its developers fell for a phishing attack. The breach began
with a phishing email sent to a developer's personal computer. That email had a
malicious macro in a Word document that was disguised as a legitimate email
attachment, which then ran a script on his personal computer. This led to his
personal mnemonic wallet phrase being compromised.

15 Published on 28 Jan 2022

https://www.coindesk.com/business/2021/12/10/badgerdao-reveals-details-of-how-it-was-hacked-for-120m/
https://workers.cloudflare.com/
https://www.coindesk.com/business/2021/12/10/badgerdao-reveals-details-of-how-it-was-hacked-for-120m/
https://badger.com/technical-post-mortem
https://badger.com/technical-post-mortem
https://badger.com/technical-post-mortem
https://www.businessinsider.com/hacker-steals-55-million-in-crypto-after-bzx-phishing-attack-2021-11
https://twitter.com/SlowMist_Team/status/1456647033826123780?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1456647033826123780%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.businessinsider.com%2Fhacker-steals-55-million-in-crypto-after-bzx-phishing-attack-2021-11
https://www.businessinsider.com/hacker-steals-55-million-in-crypto-after-bzx-phishing-attack-2021-11

Crypto.com | 16

3.3 Variants of Phishing Attacks
At the programming language level, phishing attacks exist as a variant in
smart contract language Solidity. In general, a smart contract might perform
permissions validation before crypto assets related operations.

For example, let us consider two global objects in a call chain triggered by a
transaction tx originated from user u, where tx calls the contract A, and A calls
another contract B. From A’s perspective the objects msg.sender and tx.origin all
refer to the address of u. However, such two objects are not identical from the
view of B, as msg.sender denotes the address of A while tx.origin is the address of
u. Therefore, some smart contracts which check whether tx.orgin is the expected
account are at risk of phishing attacks. The community usually recommended
checking the value of msg.sender with respect to permission checking.

As shown above, a phishing attack tampers a vulnerable smart contract by
bypassing the insecure permission check. The method update() updates the
age information to a given student address originated from an external address
(i.e., msg.sender). The assert() method guarantees that only authorised roles can
perform the actual update logic. To launch a phishing attack, let us assume a
transaction whose tx.origin is a privileged account, and thus it passes the assert()
check and updates an age to an address provided by msg.sender. Unfortunately,
once such a transaction invokes another smart contract, which invokes update()

16 Published on 28 Jan 2022

https://www4.comp.polyu.edu.hk/~csxluo/SODA.pdf
https://docs.soliditylang.org/en/v0.4.24/units-and-global-variables.html
https://docs.soliditylang.org/en/v0.4.24/units-and-global-variables.html
https://medium.com/coinmonks/solidity-tx-origin-attacks-58211ad95514
https://www4.comp.polyu.edu.hk/~csxluo/SODA.pdf
https://www4.comp.polyu.edu.hk/~csxluo/SODA.pdf

Crypto.com | 17

back again, the value of msg.sender is no longer equal to tx.origin in this
transaction, resulting in an attacker can maliciously bypass the permission
checking and update arbitrary age values to an arbitrary address.

3.4 Mitigation & Prevention
The mitigation of phishing attacks requires not only technical prevention
implementation, but also the compliance of human behaviours.

In general, the prevention strategies can be divided into three classifications:

1. Good phishing attack training and routine self-checking. For instance,
every employee should carefully check the correctness of email
addresses, URLs, and text messages before clicking any external link.

2. Companies may use SSL certificates to secure all traffic to and from their
website. This protects the information being sent between the web server
and user browsers from eavesdropping.

3. Regularly training technical developers with secure coding habits so that
variants of phishing attacks (which occurs at low-level programming
language) can be prevented.

17 Published on 28 Jan 2022

Crypto.com | 18

4. Flash Loan Attacks & Price
Manipulation

4.1 Attack Explained
Decentralised lending platforms provide loans to businesses or the public with no
intermediaries present. On the other hand, DeFi lending protocols enable
everyone to earn interest on supplied stable coins and cryptocurrencies. Before
the invention of flash loans, DeFi lending required users to over-collateralise
a loan upfront in order to borrow funds. Flash loans introduced a new form
of borrowing whereby a user can borrow a large amount of funds without
putting up collateral, allowing them to leverage themselves without risking their
own funds. By definition, flash loans are only valid within one transaction and
must be repaid by the end of that transaction.

Generally, many DeFi platforms require real-time information about the market
price of the assets used as borrowed loans or redemption. To implement this
functionality, DeFi protocols introduce oracles, third parties reporting the price of
assets from real-world (off-chain) sources. Before diving into the details of the
flash loan attack, we should understand what exactly an oracle is.

Unlike the straightforward interactions between two on-chain entities,
transferring information from external off-chain sources to a smart contract
creates new challenges. Bridging the connection between the blockchain and
the outside world requires an additional infrastructure known as an oracle. The
popular oracle solutions include on-chain DEXs (Uniswap, dYdX) and decentralised
oracle networks (Chainlink), etc.

In practice, flash loan attacks usually couple with price (or oracle) manipulation.
The arbitrageur plays the strategies by lowering or increasing the particular
assets and makes profit. A successful flash loan attack involves the following
steps:

1. An arbitrageur looks for a DeFi protocol that supports flash loans, and
borrows a large number of token A as a flash loan.

2. Arbitrageur exchanges token A for token B. Due to large amount
exchange, this results in lowering the price of token A and raising the
price of token B.

3. Subsequently, the arbitrageur selects another DeFi lending protocol as
the target, and deposits token B as collateral to borrow out a larger

18 Published on 28 Jan 2022

https://defiprime.com/decentralized-lending
https://insights.glassnode.com/defi-attacks-flash-loans-centralized-price-oracles/
https://insights.glassnode.com/defi-attacks-flash-loans-centralized-price-oracles/
https://insights.glassnode.com/defi-attacks-flash-loans-centralized-price-oracles/
https://www.computer.org/csdl/proceedings-article/dapps/2021/348500a039/1xR7kYeK4De
https://www.computer.org/csdl/proceedings-article/dapps/2021/348500a039/1xR7kYeK4De
https://uniswap.org/
https://dydx.exchange/
https://chain.link/

Crypto.com | 19

number of token A due to the increased price of token B. Note that the
criteria of protocol selection is that this DeFi protocol employs the above
DEX as its sole oracle data feed.

4. Eventually, the arbitrageur uses the borrowed token A to payback the
previous flash loan. As a larger number of token A was borrowed out, the
arbitrageur is able to make profit with the remaining token A.

What are the consequences? Apart from the unearned profit from the perspective
of arbitrageur, as the prices of token A and B on the DEX get arbitraged back to
the true market-wide price, the DeFi protocol is left with an undercollateralised
position (i.e. the debt worth more than collateral), directly harming users such as
liquidity providers of the pool.

4.2 Case Studies
The example above is a formal (or simplified) version of a flash loan attack. In real
world scenarios, the attackers generally play on more sophisticated
strategies to launch a flash loan attack. Below, we select a pioneer, well-known,
but more complex case that attacked bZx platforms and yielded a profit of
2381.41 ETH ($634.9k), happened on 18 February 2020.

19 Published on 28 Jan 2022

https://assets.ctfassets.net/hfgyig42jimx/2l90zr21hmUG2aL7eK02Cl/ccb091f0c5247abaed4984bc3c286782/Attacks_and_Exploits_in_DeFi.pdf
https://assets.ctfassets.net/hfgyig42jimx/2l90zr21hmUG2aL7eK02Cl/ccb091f0c5247abaed4984bc3c286782/Attacks_and_Exploits_in_DeFi.pdf
https://arxiv.org/pdf/2003.03810.pdf
https://arxiv.org/pdf/2003.03810.pdf
https://arxiv.org/pdf/2003.03810.pdf

Crypto.com | 20

The core of this attack is an oracle manipulation using a flash loan, which
lowers the price of sUSD/ETH. In the following, the arbitrageur benefits from this
decreased sUSD/ETH price by borrowing ETH with sUSD as collateral.

1. In Step 1, the arbitrageur borrows a flash loan of 7500.00 ETH from bZx.

2. In the next three steps (Step 2 - 4), the arbitrageur converts a total of
4417.86 ETH to 1099841.39 sUSD (at an average of 248.95 sUSD/ETH).

3. The exchange rates in Step 2 and 3 are 171.15 and 176.62 sUSD/ETH,
respectively. These two steps decrease the sUSD/ETH price to 106.05
sUSD/ETH on Uniswap and 108.44 sUSD/ETH on Kyber Reserve, which are
collectively used as a price oracle of the lending platform bZx. The trade
on the Synthetix in Step 4 is yet unaffected by the previous trades. The
adversarial trader then collateralises all purchased sUSD (1099 841.39) to
borrow 6799.27 ETH.

4. Now the arbitrageur possesses 6799.27+3082.14 ETH and in the last step
repays the flash loan amounting to 7500.00 ETH. The arbitrageur,
therefore, generates a revenue of 2381.41 ETH while only paying 0.42 ETH
(118.79 USD) transaction fees

Besides the above case on bZx, in the past two years, flash loan attacks have
compromised the multiple DeFi platforms with over $200M in
cryptocurrencies stolen.

20 Published on 28 Jan 2022

Crypto.com | 21

Platform Date Blockchain Value Stolen

Cream Finance 28 October 2021 Ethereum $130M

PancakeHunny 20 October 2021 BSC $2M

Indexed
Finance

15 October 2021 Ethereum $16M

Vee Finance 20 September 2021 Avalanche $35M

ApeRocket 14 July 2021 BSC & Polygon $1.3M

Belt Finance 30 May 2021 BSC $50M

BurgerSwap 28 May 2021 BSC $7.2M

PancakeBunny 20 May 2021 BSC $3M

Rari Capital 8 May 2021 Ethereum $11M

Alpha Homora 13 February 2021 BSC $37M

Yearn Finance 5 February 2021 Ethereum $11M

21 Published on 28 Jan 2022

https://twitter.com/CreamdotFinance/status/1453455806075006976?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1453455806075006976%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fblockworks.co%2Fflash-loan-exploit-whips-cream-finance-for-130-million%2F
https://medium.com/hunnyfinance/pancakehunny-incident-report-b5b74557b0ad
https://cryptobriefing.com/defi-protocol-indexed-finance-suffers-16m-exploit/
https://cryptobriefing.com/defi-protocol-indexed-finance-suffers-16m-exploit/
https://halborn.com/explained-the-vee-finance-hack-september-2021/
https://www.bsc.news/post/aperocket-releases-official-statement-regarding-1-2-million-decentralized-finance-defi-hack
https://www.coindesk.com/markets/2021/05/30/belt-finance-victim-of-flash-loan-attack-in-latest-exploit-of-a-bsc-defi-protocol/
https://twitter.com/FrankResearcher/status/1398114924337971201
https://twitter.com/PancakeBunnyFin/status/1395173093333680136
https://halborn.com/explained-the-rari-capital-hack-may-2021/
https://cointelegraph.com/news/alpha-homora-loses-37-million-following-iron-bank-exploit
https://cryptobriefing.com/hacker-spends-8-3-million-fees-attack-yearn-finance/

Crypto.com | 22

Balancer 28 June 2021 Ethereum &
Polygon &
Arbitrum

$500k

4.3 Mitigation & Prevention
Flash loan attacks can be mitigated in two ways.

On the one hand, DeFi operators should avoid using centralised/single oracles for
external data feeds. Instead, some best practises include the Time Weighted
Average Price (TWAP) oracle adopted by Uniswap and decentralised oracle
networks like Chainlink.

On the other hand, it is recommended to leverage tools which can identify Flash
loan attack possibility, such as OpenZeppelin. It has been adopted by Synthetix,
Yearn Finance, and Opyn.

22 Published on 28 Jan 2022

https://www.coindesk.com/markets/2020/06/29/hacker-drains-500k-from-defi-liquidity-provider-balancer/
https://smartcontentpublication.medium.com/twap-oracles-vs-chainlink-price-feeds-a-comparative-analysis-8155a3483cbd
https://smartcontentpublication.medium.com/twap-oracles-vs-chainlink-price-feeds-a-comparative-analysis-8155a3483cbd
https://medium.com/geekculture/what-is-a-defi-flash-loans-flash-loan-attack-c130c83d9811
https://www.opyn.co/

Crypto.com | 23

5. Rug Pulls

5.1 Attack Explained
Rug pulls are one common DeFi attacks in which an individual in the
company with access to the company’s contracts misuses their privileges for
draining value from the protocol. In all cases, the project and the team
disappear into oblivion with little left to solve the issue. Generally, we use it to
refer to cases in which developers build out what appear to be legitimate
cryptocurrency projects — meaning they do more than simply set up wallets to
receive cryptocurrency for, say, fraudulent investing opportunities — before
taking investors’ money and disappearing.

According to a report by Chainalysis, rug pulls took more than $2.8B worth of
cryptocurrency from victims in 2021.

23 Published on 28 Jan 2022

https://101blockchains.com/security-risks-in-defi/
https://101blockchains.com/security-risks-in-defi/
https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/
https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/

Crypto.com | 24

5.2 Case Studies
Most rug pulls entail developers creating new tokens and promoting them to
investors, who trade for the new token in the hopes the token will rise in
value, which also provides liquidity to the project — just how most DeFi
projects start. In rug pulls, however, the developers eventually drain the funds
from the liquidity pool, sending the token’s value to zero, and disappear. Rug
pulls are prevalent in DeFi because with the right technical know-how, it’s cheap
and easy to create new tokens on the Ethereum blockchain or others and get
them listed on decentralised exchanges (DEXes) without a code audit. That last
point is crucial — decentralised tokens are meant to be designed in such a way
that investors holding governance tokens can vote on things like how assets in the
liquidity pool are used, which would make it impossible for the developers to
drain the pool’s funds. While code audits that would catch these vulnerabilities are
common in the space, they’re not required in order to list on most DEXes, hence
why we see so many rug pulls.

Platform Date Blockchain Value Stolen

AnubisDAO 1 November
2021

Ethereum $60M

StableMagnet 23 June 2021 Ethereum & BSC $27M

Alchemix 16 June 2021 Ethereum $6.5M

Uranium Finance 28 April 2021 BSC $50M

TurtleDex 19 March 2021 BSC $2.4M

Meerkat Finance 4 March 2021 BSC $31M

24 Published on 28 Jan 2022

https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/
https://blog.chainalysis.com/reports/2021-crypto-scam-revenues/
https://coinmarketcap.com/alexandria/glossary/governance-token
https://decrypt.co/84924/anubisdao-investors-lose-60-million-in-alleged-rug-pull
https://halborn.com/explained-the-stablemagnet-rugpull-june-2021/
http://alchemix
https://cryptopotato.com/50m-drained-from-uranium-finance-hack-or-rug-pull/
https://cointelegraph.com/news/binance-smart-chain-s-turtledex-rugpulls-shortly-after-launch
https://coinmarketcap.com/alexandria/article/31m-stolen-after-meerkat-finance-launch-goes-wrong

Crypto.com | 25

In the table above, several rug pulls events that took place in 2021 on six DeFi
protocols are listed. For instance, on 4 March 2021, Meerkat Finance, a DeFi yield
project using a forked cryptocurrency of Yearn.finance, perpetrated a rug pull
worth $31M in crypto assets. The platform’s official Telegram channel claimed that
its smart contract vault had been compromised. Investigations suggested that
either the private key of the Meerkat deployer was compromised or the incident
was self-directed by the owners of the project.

5.3 Mitigation & Prevention
Avoiding scams and potential rug pulls in crypto projects ultimately boils
down to awareness before investing and doing your own research. Below, we
list a few ways to check the legitimacy of any project.

1. Check liquidity – Legitimate projects usually lock up a significant number
of tokens for a long time, which cannot be withdrawn from the liquidity
pool during that time frame. Check the project’s staking period, and verify
the amount of liquidity belonging to project owners.

2. Review the project’s Github, whitepaper, and social media channels –
Github usually contains their development activities. It’s well worth
keeping an eye on these, as well as a project’s social media channels
including Telegram, Twitter, etc.

3. Confirm team credibility – Any project that’s potentially a rug pull is
defined by its owners and developers. Their relevance to the
cryptocurrency space, as well as their previous involvements, track
records, social media, industry history, and connections must add up if
they are to gain credibility.

4. Look at holders and listings on DEX Platforms – If a token has only a few
token holders and isn’t actively traded on multiple platforms, it’s possible
that it might be a rug pull waiting. Tools like Etherscan and CoinGecko can
reveal more information about a token.

25 Published on 28 Jan 2022

Crypto.com | 26

6. Code Bugs

6.1 Attack Explained
Like all computer programs, it is likely that most DeFi protocols contain
errors. These kinds of errors should be addressed even more seriously than
ordinary program bugs as they are involve monetary-related.

6.2 Case Studies
Below, we explain five exploitation events in DeFi space due to the code flaws.

Platform Date Blockchain Value
Stolen

Bug

Polygon 29
December

2021

Polygon $24B (at risk) Lack of
balance/addr
ess checking

Pizza 9 December
2021

BSC $5M Integer
overflow

Compound 30
September

2021

Ethereum $80M (at risk) Multi-sig
wallet missing

MakerDAO 4 September
2021

Ethereum $4M Re-callable
Init()

bZx 15
September

2020

Ethereum $8M Parameter
update bug

26 Published on 28 Jan 2022

https://blog.polygon.technology/all-you-need-to-know-about-the-recent-network-upgrade/?utm_source=Twitter-Main&utm_medium=Tweet&utm_campaign=Tier-1-Announcement
https://halborn.com/explained-the-pizza-defi-platform-hack-december-2021/
https://www.coindesk.com/tech/2021/09/30/defi-money-market-compound-overpays-15m-in-comp-rewards-in-possible-exploit/
https://medium.com/daomaker/removing-all-smart-contract-risk-tech-team-tokens-52c55961e986
https://bzx.network/blog/incident

Crypto.com | 27

6.2.1 Lack of Balance/Address Checking

On 29 December 2021, a critical vulnerability in the Polygon’s genesis contract was
highlighted, putting $24B of MATIC at risk. The vulnerability consisted of a lack of
balance/address check in the transferWithSig() and _transferFrom() functions of
Polygon’s BaseERC20.sol contract and allowed an attacker to maliciously steal all
balances from the genesis contract.

The adversarial strategies are as follows:

1. An attacker prepares an invalid ECDSA signature (a byte string with a
length outside the 65-byte norm), an amount (the full balance of the
victim’s contract), a to address (attacker’s address), and calls
transferWithSig() function.

2. Due to the check in ecrecovery() function, if a passed signature does not
follow the ECDSA scheme, it will return the zero address, referring to the
genesis contract. After the from address is recovered from the invalid
signature, the _transferFrom() function is called.

3. In _transferFrom() function, the validity checking of the from address is
missing. Moreover, as the balances are not checked for the from and to, it
will directly transfer the whole amount to the attacker from the victim’s
contract.

27 Published on 28 Jan 2022

https://cointelegraph.com/news/polygon-upgrade-quietly-fixes-bug-that-put-24b-of-matic-at-risk
https://github.com/maticnetwork/contracts/pull/392/commits/55e8118ad406c9cb0e9b457ca4f275c5977809e4
https://medium.com/immunefi/polygon-lack-of-balance-check-bugfix-postmortem-2-2m-bounty-64ec66c24c7d
https://medium.com/immunefi/polygon-lack-of-balance-check-bugfix-postmortem-2-2m-bounty-64ec66c24c7d
https://medium.com/immunefi/polygon-lack-of-balance-check-bugfix-postmortem-2-2m-bounty-64ec66c24c7d
https://medium.com/immunefi/polygon-lack-of-balance-check-bugfix-postmortem-2-2m-bounty-64ec66c24c7d
https://medium.com/immunefi/polygon-lack-of-balance-check-bugfix-postmortem-2-2m-bounty-64ec66c24c7d

Crypto.com | 28

As a remedy, Polygon finally removed the transferWithSig() function from its
ERC20 code repository.

6.2.2 Integer Overflow

Integer overflow vulnerabilities are possible because software uses variables
of a fixed size to store values. This fixed size means that any variable can only
store a certain range of values. If a value goes outside of this range, then it rolls
over to be interpreted as a lower value.

On 9 December 2021, the BSC DeFi platform PIZZA was the victim of an attack.
The attacker took advantage of vulnerabilities in eCurve to steal $5M in tokens
from the protocol due to integer overflow vulnerability.

A direct explanation is depicted below. As shown in the code snippet, if a balance
reaches the maximum uint value (2^256) it will circle back to zero which is
so-called integer overflow. Therefore, programmers are advised to check the
state of changes before updating parameter values.

6.2.3 Multi-sig Incompleteness

Multisignature wallets are cryptocurrency wallets that require two or more
private keys to sign and send a transaction, which can potentially keep your
funds safer. A demonstrative example can be found in this Crypto.com report.

28 Published on 28 Jan 2022

https://github.com/maticnetwork/contracts/pull/392/commits/55e8118ad406c9cb0e9b457ca4f275c5977809e4
https://github.com/maticnetwork/contracts/pull/392/commits/55e8118ad406c9cb0e9b457ca4f275c5977809e4
https://halborn.com/explained-the-pizza-defi-platform-hack-december-2021/
https://halborn.com/explained-the-pizza-defi-platform-hack-december-2021/
https://pizzafinance.app/#/
https://www.coindesk.com/tech/2020/11/10/multisignature-wallets-can-keep-your-coins-safer-if-you-use-them-right/
https://www.coindesk.com/tech/2020/11/10/multisignature-wallets-can-keep-your-coins-safer-if-you-use-them-right/
https://assets.ctfassets.net/hfgyig42jimx/2tkZ3J2QmBUX2xA5oD5DLS/b2bec8bf0967c352130f986467cf384b/Looking_Back_on_2021_and_2022_Predictions.pdf

Crypto.com | 29

On 30 September 2021, observers have noted that Compound’s Comptroller
contract is not managed by a multi-sig controlled by Compound Labs, and any fix
to the exploit may require a governance vote among COMP holders, which staked
$80M value at risk.

Compound acknowledged the exploit on its official Twitter handle and quickly
fixed it, saying no user funds are at risk.

6.2.4 Re-callable Init()

On 4 September 2021, MakerDAO was exploited for $4M. They left the init()
function unprotected. The attacker re-initialised the contract with malicious
data and then called emergencyExit() to get away with the funds.

As shown below, the vulnerability arose from the public init() function missing a
check for initialisation, allowing the attacker to reinitialise 4 token contracts with
malicious data. Then, the emergencyExit() function was used to withdraw the
funds from each. A secure practice is shown in the right code snippet. The
reinitialisation actions can be avoided with blue lines that guarantees the init()
function can be initialised once.

29 Published on 28 Jan 2022

https://www.coindesk.com/tech/2021/09/30/defi-money-market-compound-overpays-15m-in-comp-rewards-in-possible-exploit/
https://twitter.com/compoundfinance/status/1443359184897069060?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1443359184897069060%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.coindesk.com%2Ftech%2F2021%2F09%2F30%2Fdefi-money-market-compound-overpays-15m-in-comp-rewards-in-possible-exploit%2F
https://twitter.com/Mudit__Gupta/status/1434059922774237185
https://github.com/tintinweb/smart-contract-sanctuary/blob/9d69ae5effea37ebbea24c3b458113ccd3904408/contracts/kovan/c3/c3820bA36f79157A5A85c610945a56e59f062471_Claim.sol
https://github.com/tintinweb/smart-contract-sanctuary/blob/9d69ae5effea37ebbea24c3b458113ccd3904408/contracts/kovan/c3/c3820bA36f79157A5A85c610945a56e59f062471_Claim.sol
https://rekt.news/daomaker-rekt/
https://github.com/tintinweb/smart-contract-sanctuary/blob/9d69ae5effea37ebbea24c3b458113ccd3904408/contracts/kovan/c3/c3820bA36f79157A5A85c610945a56e59f062471_Claim.sol

Crypto.com | 30

6.2.5 Code Workflow Error

Interestingly, bZx suffered from not only flash loan attacks but also code
bugs due to wrong code workflow within its smart contract code. It was attacked
on 15 September 2021 and lost $8M due to a faulty code.

The flawed code allowed an attacker to duplicate assets, and increase their
balance of iTokens on bZx, allowing the hacker to mint $8M in total.

They executed the following steps in the legacy code (before exploitation):

1. The transfer() function was called with the same _from and _to address

2. At this point ,having _from and _to as the same address will result in
_balancesFrom and _balancesTo being equal.

3. Then, line #3 - #4 decrease the balance of _balancesFrom and line #5 - #6
increase balance of _balancesTo.

4. Lastly the most important part is storing _balancesFromNew and
_balancesToNew. The user was effectively able to increase his balance
artificially.

30 Published on 28 Jan 2022

https://www.theblockcrypto.com/post/77656/defi-protocol-bzx-attacked-lost-8-million-faulty-code
https://bzx.network/itokens

Crypto.com | 31

In the patched code (after fixing), the fix saw the move of balancesTo being set
after the deduction from balances[_from]. This prevents a user from inflating their
balance.

What can we learn from this attack? When it comes to updating the values of
key parameters, it is important to carefully review the code flow.

31 Published on 28 Jan 2022

Crypto.com | 32

7. Poor Access Control

7.1 Attack Explained
Access control is a traditional security mechanism that regulates and limits
the access permission to particular system resources. For instance, on
Ethereum, by applying well-designed and suitable criteria the access of contract
functionalities can be restricted. A few build-in methods (i.e., assert() and require())
have been already proposed in the contract programming languages to facilitate a
fundamental level of access control, which are limited and far from being enough.
Due to high on-chain storage cost and limitations of the smart contract
programming language, no fine-grained access control mechanisms could be
enforced on the contract side.

Usually, many DeFi protocols leverage OpenZeppelin to provide templates for e.g.
role-based access control. Unfortunately, this solution does not allow for flexible
access control management, and can’t block all malicious access from suspicious
actors. As a result, we can see numerous security exploit events due to poor
access control enforced.

7.2 Case Studies
In August 2021, the Punk protocol was the victim of a hack. A vulnerability in the
project’s smart contracts led to over $8.9M in tokens extracted from the project.

32 Published on 28 Jan 2022

https://docs.soliditylang.org/en/v0.4.24/control-structures.html
https://ieeexplore.ieee.org/document/9153398/references#references
https://ieeexplore.ieee.org/document/9153398/references#references
https://docs.openzeppelin.com/contracts/2.x/access-control
https://punk.finance/
https://halborn.com/explained-the-punk-protocol-hack-august-2021/

Crypto.com | 33

As indicated above, the root cause is a missing modifier function (access control)
in the initialize() function within the CompoundModel.sol code. After gaining
access to the initialize() function, the attacker could call the withdrawTo() and
withdrawToForge() functions to send the tokens stored in the contract to the
attacker-control address. More specifically:

1. The attacker used delegateCall() to replace what should have been the
protocol’s forgeAddress with their own malicious contract, as a parameter
of the CompoundModel’s initialize() function. The lack of an ‘initializer()’
Modifier meant that such the function omitted good access control logic.
Any external account can call it in addition to revising any core
parameter.

2. With the malicious contract address updated, the attacker was then able
to call withdrawTo() and withdrawToForge(), sending the assets controlled
by the CompoundModel directly to his malicious contract, and into their
wallet.

Based on the official remedy by Punk protocol on its github, the logic of access
control has been enforced on initialize() function. Currently, only the platform
admin is able to bypass the access control and alter the particular parameter
values.

33 Published on 28 Jan 2022

https://docs.soliditylang.org/en/v0.8.10/contracts.html#function-modifiers
https://github.com/PunkFinance/punk.protocol/blob/master/contracts/models/CompoundModel.sol
https://halborn.com/explained-the-punk-protocol-hack-august-2021/
https://halborn.com/explained-the-punk-protocol-hack-august-2021/
https://medium.com/coinmonks/delegatecall-calling-another-contract-function-in-solidity-b579f804178c
https://etherscan.io/address/0x1695ce70da4521cb94dea036e6ebcf1e8a073ee6
https://rekt.news/punkprotocol-rekt/
https://rekt.news/punkprotocol-rekt/
https://github.com/PunkFinance/punk.protocol/blob/master/contracts/models/CompoundModel.sol
https://github.com/PunkFinance/punk.protocol/blob/master/contracts/models/CompoundModel.sol
https://etherscan.io/txs?a=0x1d5a56402425c1099497c1ad715a6b56aaccb72b
https://github.com/PunkFinance/punk.protocol/commit/142e4a78eff99e088d7d4b8f230eb89a9242e2a1

Crypto.com | 34

Similarly, in August 2021, you are likely familiar with the hack on the
Polynetwork protocol, which was the victim of the biggest DeFi hack to date. The
attacker stole an estimated $600.3M in various tokens by exploiting a vulnerability
(i.e. poor access control) in the protocol’s smart contracts.

As shown above, the hack was made possible by mismanagement of the access
rights between two important Polynetwork smart contracts. The first one is
EthCrossChainManager and the second one is EthCrossChainData.

The EthCrossChainManager contract holds high privilege that has the right to
trigger messages from another chain to the Poly chain. Any external account can
call a cross-chain event by issuing a transaction on the source chain that invokes
the verifyHeaderAndExecuteTx() function within EthCrossChainManager, and
specifying a target Poly contract to execute. However, poor access control was
found in this function.

The malicious adversary first breached the access of
verifyHeaderAndExecuteTx() within EthCrossChainManager contract, which
subsequently called the putCurEpochConPubKeyBytes() function of the
EthCrossChainData contract. This contract is responsible for setting and
managing a list of public keys of ‘authenticator nodes’ (i.e., keepers) that manage
the wallets in the underlying liquidity chains. In other words, EthCrossChainData
can decide who has the privilege of moving the large amount of funds. Eventually,
the adversaries simply set their own public keys to replace that of a keeper, and

34 Published on 28 Jan 2022

https://halborn.com/explained-the-poly-network-hack-august-2021/
https://halborn.com/explained-the-poly-network-hack-august-2021/
https://github.com/polynetwork/eth-contracts/blob/d16252b2b857eecf8e558bd3e1f3bb14cff30e9b/contracts/core/cross_chain_manager/logic/EthCrossChainManager.sol
https://github.com/polynetwork/eth-contracts/blob/master/contracts/core/cross_chain_manager/data/EthCrossChainData.sol
https://github.com/polynetwork/eth-contracts/blob/d16252b2b857eecf8e558bd3e1f3bb14cff30e9b/contracts/core/cross_chain_manager/logic/EthCrossChainManager.sol#L127
https://github.com/polynetwork/eth-contracts/blob/d16252b2b857eecf8e558bd3e1f3bb14cff30e9b/contracts/core/cross_chain_manager/data/EthCrossChainData.sol#L45
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/
https://research.kudelskisecurity.com/2021/08/12/the-poly-network-hack-explained/

Crypto.com | 35

then have the right to execute a high volume transaction within the Poly network
to exfiltrate a large amount of funds to other wallets.

7.3 Mitigation & Prevention
As discussed above, basic access control can be implemented at programming
language level. When it comes to fine-grained access control, DeFi protocols
are expected to devise crafted access control mechanisms and integrate
these into more advanced frameworks.

One line of research lies in blacklists and whitelists to limit the access from
external suspicious addresses. These lists are supposed to be dynamically
updated and easily managed by protocol governors.

Another aspect is to employ third-party access control public services.
According to the SMACS research project, an off-chain public access service can be
employed, in which all sophisticated access control policies are put into such a
service that can validate the malicious transaction calls and issue the access
credentials to protocol users.

35 Published on 28 Jan 2022

https://ieeexplore.ieee.org/document/9153398/references#references

Crypto.com | 36

8. Compromised Private Key

8.1 Attack Explained
When you are interacting with a blockchain ecosystem, e.g. to buy
cryptocurrencies or deposit crypto assets into lending platforms, you are issued
two keys: a public key, which works like an email address (meaning you can safely
share it with others, allowing you to send or receive funds), and a private key,
which is typically a string of letters and numbers (and which is not to be shared
with anyone). You can think of the private key as a password that unlocks the
virtual vault that holds your money. As long as you (and only you) have access to
your private key, your funds are safe and can be managed anywhere in the world
with an internet connection.

Here we briefly demonstrate the relationship between private key, public key, and
blockchain valid address in Ethereum. As indicated, a valid Ethereum address is
generated by three necessary steps:

1. Create a random private key. A private key is 64 hexadecimal characters
(or 256 bits/32 bytes) that will access your account.

2. Derive a public key from the private key. A public key has 64 bytes, which
is generated with Elliptic Curve Digital Signature Algorithm (ECDSA) and
SECP256k1 curve. Note that public key and private key are a matched key
pair.

3. Take the 64-byte public key as input and compute its keccak-256 hash
value. The output is 32 bytes and the last 20 bytes would be a valid
Ethereum address paired with the above key pair.

36 Published on 28 Jan 2022

https://www.coinbase.com/learn/crypto-basics/what-is-a-private-key
https://www.coinbase.com/learn/crypto-basics/what-is-a-private-key
https://ethereum.stackexchange.com/questions/3542/how-are-ethereum-addresses-generated/3619#3619
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://solidity-by-example.org/hashing/
https://solidity-by-example.org/hashing/

Crypto.com | 37

Why are private keys so important? Firstly, cryptocurrencies like Bitcoin and
Ethereum are decentralised, meaning there is no bank or any other institution in
the middle holding your digital money. Keeping private keys helps you to protect
your funds. Secondly, the public key is generated by your private key by dedicated
cryptography constructions, which makes them a matched pair. When you make a
transaction using your public key, you verify that it’s really you by using your
private key. Finally, taking Bitcoin as an example, even though any curious
observer can see when Bitcoin is bought or sold or used, only the holder of a
private key can make those transactions.

8.2 Case Studies
There are a number of private key leakage exploitations in several DeFi platforms.
The consequences of private key compromising are always devastating since
the internal private keys are usually linked with individual or protocol funds.

For instance, on 30 July 2021, the private key that enabled interaction with the
timelock was publicly available on the Levyathan project github repository, due to
a serious oversight of the developer. This oversight allowed a malicious hacker to
gain control of the LEV contract and mint an infinite number of tokens before
dumping them on the market. The catastrophic consequence was that
Levyathan disappeared from the market.

37 Published on 28 Jan 2022

https://levyathan-index.medium.com/levyathan-our-past-and-future-396b8e6f164b
https://levyathan-index.medium.com/levyathan-our-past-and-future-396b8e6f164b
https://www.levyathan.finance/

Crypto.com | 38

Furthermore, another two similar attacks compromising wallet’s private keys of
EasyFi and Nexus Mutual stole around $81M (on 19 April 2021) and $8M (on 14
December 2020), respectively.

8.3 Mitigation & Prevention
It is probable that this initial compromise was made possible by human error
(clicking on a phishing link, use of a weak password, etc.). An effective approach to
prevent private keys from being compromised is good internal training. In
addition, keeping keys in a safe place and employing tools to resist & detect
potential threats are helpful to avoid private key to be leaked.

38 Published on 28 Jan 2022

https://easyfi.network/
https://nexusmutual.io/
https://halborn.com/explained-the-easyfi-hack-april-2021/
https://halborn.com/explained-nexus-mutual-ceo-hacked-for-8-million-in-cryptocurrency-dec-2020/

Crypto.com | 39

9. Conclusion
In this report, we studied historical, infamous security exploits in the DeFi space,
including reentrancy, phishing, and flash loan attacks, rug pulls, common code
flaws, poor access control and compromised private keys.

By exploring the adversarial strategies of each attack type, we dispelled the mist of
the full workflows for particular attacks. Furthermore, we provided real-world case
studies that we can learn from the history and presented corresponding high-level
prevention solutions.

To be sure, no system is secure forever. Thus, countering the attack vectors never
ends. The severity of attacks has fueled interest in the community from both
industry and academia to enhance the security of the underlying DeFi
environment, and we believe that the ecosystem will become increasingly robust
and secure.

39 Published on 28 Jan 2022

Crypto.com | 40

References
Liu, Bowen, et al. “A First Look into DeFi Oracles.” 2021 IEEE International Conference on

Decentralized Applications and Infrastructures, vol.
10.1109/DAPPS52256.2021.00010, no. 2021, 2021, pp. 39-48. IEEE,
https://www.computer.org/csdl/proceedings-article/dapps/2021/348500a039/1x
R7kYeK4De. Accessed 01 01 2022.

Liu, Bowen, et al. “Smacs: smart contract access control service.” 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, vol.
978-1-7281-7260-6, no. 2020, 2020, pp. 221-232. IEEE,
https://ieeexplore.ieee.org/document/9153398/references#references. Accessed
01 01 2022.

Qin, Kaihua, et al. “Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit.”
International Conference on Financial Cryptography and Data Security, vol.
12674, no. 2021, 2021, pp. 3-32. Lecture Notes in Computer Science,
https://link.springer.com/chapter/10.1007%2F978-3-662-64322-8_1. Accessed 01
01 2022.

Zhou, Liyi, et al. “High-Frequency Trading on Decentralized On-Chain Exchanges.” 2021
IEEE Symposium on Security and Privacy, vol. 978-1-7281-8934-5, no. 2021, 2021,
pp. 428-445. IEEE, https://ieeexplore.ieee.org/document/9519421. Accessed 01
01 2022.

40 Published on 28 Jan 2022

Crypto.com | 41

e. contact@crypto.com

© Copyright 2022. For information, please visit crypto.com

41 Published on 28 Jan 2022

